Numerical analysis of velocity and temperature fields in concentric annular tube for the laminar forced heat convection

نویسنده

  • IOAN SÂRBU
چکیده

This paper presents a study of the dual reciprocity boundary element method (DRBEM) for the laminar heat convection problem between two coaxial cylinders with constant heat flux boundary condition. DRBEM is one of the most successful technique used to transform the domain integrals arising from the nonhomogeneous term of the Poisson equation into equivalent boundary only integrals. This recently developed and highly efficient numerical method is tested for the solution accuracy of the fluid flow and heat transfer study between two coaxial cylinders. Since their exact solutions are available, DRBEM solutions are verified with different number of boundary element discretiyations and internal points. The results obtained in this study are discussed with the relative error percentage of velocity and temperature solutions, and potential applicability of the method for the more complicated heat convection problems with arbitrary duct geometries. Key-Words: Concentric annular tube, Laminar heat convection, Heat flux boundary condition, Numerical analysis, Dual reciprocity boundary element method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Investigation of Combined Radiation and Nutral Convention Heat Transfer in a Horizonal Annulus

Combined radiation and natural convection within the annular region of two infinitely long horizontal concentric cylinders are investigated numerically in this research. Radial and tangential radiation effects ate considered using Milne-Eddington approximation for a two-dimensional radiative transfer. The basic conservation equations are discretized with the finite volume method and SIMPLER alg...

متن کامل

Forced Convection Heat Transfer of Giesekus Viscoelastic Fluid in Concentric Annulus with both Cylinders Rotation

A theoretical solution is presented for the forced convection heat transfer of a viscoelastic fluid obeying the Giesekus constitutive equation in a concentric annulus under steady state, laminar, and purely tangential flow. A relative rotational motion exists between the inner and the outer cylinders, which induces the flow. A constant temperature was set in both cylinders, in this study. The f...

متن کامل

Numerical Simulation of the Laminar Forced Convective Heat Transfer between Two Concentric Cylinders

The dual reciprocity method (DRM) is a highly efficient numerical method of transforming domain integrals arising from the non-homogeneous term of the Poisson equation into equivalent boundary integrals. In this paper, the velocity and temperature fields of laminar forced heat convection in a concentric annular tube, with constant heat flux boundary conditions, have been studied using numerical...

متن کامل

Numerical Study of Mixed Convection of Nanofluid in a Concentric Annulus with Rotating Inner Cylinder

In this work, the steady and laminar mixed convection of nanofluid in horizontal concentric annulus withrotating inner cylinder is investigated numerically. The inner and outer cylinders are kept at constanttemperature Ti and To respectively, where Ti>To. The annular space is filled with Alumina-water nanofluid.The governing equations with the corresponded boundary conditions in the polar coord...

متن کامل

Three Dimensional Laminar Convection Flow of Radiating Gas over a Backward Facing Step in a Duct

In this study, three-dimensional simulations are presented for laminar forced convection flow of a radiating gas over a backward-facing step in rectangular duct. The fluid is treated as a gray, absorbing, emitting and scattering medium. The three-dimensional Cartesian coordinate system is used to solve the governing equations which are conservations of mass, momentum and energy. These equations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010